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Abstract

This work presents results from the study of a large volume of spacecraft flight

data pertaining to gyroscope performance. We have examined long and short

term trends of gyroscope biases. Three key results are obtained.

First, an exact solution for the time-dependence of the attitude part of the state

error covariance, averaged over the three spacecraft axes, is given. This

solution is more complete than the usual cubic polynomial for the variance in

that it includes coupling among the three gyroscope axes and includes an

important term arising from the initial correlations.

Second, several continuous 24-hour spans of gyroscope data are examined to

verify the short-term statistical model. This analysis demonstrates that in-flight

data can be used to determine the strength of the white noise driving the

random walk of the gyroscope bias. This may be useful for postlaunch im-

provement to the noise model and for diagnosing the health of the gyroscope.

Third, the long-term trends in gyroscope biases show a nearly linear sys-

tematic variation over time scales of years. This has been found on three

different missions. While the random walk model is adequate as a basis for on-

board Kalman filters or for state estimation using relatively short time spans,

these trends indicate that some applications could benefit by accounting for the

secular changes in the biases. One example is a new gyroscope calibration

method that is under development that allows for multi-epoch bias solutions.

1. INTRODUCTION

This paper presents results of analyses performed by Computer Sciences Corporation for

NASA Goddard Space Flight Center (GSFC). The analyses use flight data taken from several

missions supported by NASA/GSFC. The purpose is primarily to improve our understanding of

rate-sensing gyroscope performance. We address two questions concerning the gyro statistical

model: how can the noise parameters be determined in flight, and does the statistical model

continue to hold over very long time spans? Preliminary to examining these questions, we discuss
the time evolution of the state covariance. This indicates how the uncertainties in the estimated

attitude and gyro bias grow and includes important terms that are often neglected.

Gyroscopes often are used onboard spacecraft to measure rotation rates needed for attitude

control. The rates can also be used in ground-based processing for determining the spacecraft

attitude. A rate-sensing gyroscope provides the data needed for propagating the attitude between

sensor observations (e.g., star tracker observations). To obtain optimal estimates of the attitude,

knowledge of the noise statistics is needed. Once a statistical model is given, the optimal weights

in a Kalman filter, for example, are a function of the strength of the noise sources.

Gyro biases often are estimated along with the spacecraft attitude since they tend to drift

significantly with time. (This time may be days or months, depending on mission requirements
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and the qualit) or" the gyros.) Fhe usual gyro noise model includes a random walk of the biases.

This is a convenient and simple way to indicate a slow growth in their uncertainty (which is

balanced by the reduction in the uncertainty in a Kalman filter as other sensor data are pro-

cessed). The first question addressed here is whether the strength of the noise driving the bias

random walk can be determined using flight data. The noise parameters are usually determined

on the ground before launch. On-orbit determination provides verification that the prelaunch

values have not changed due to launch shock or aging. If changes are found, the trend can help

diagnose problems or predict the eventual sensor failure. Some previous attempts at in-flight

determination of the noise parameters have either partially failed due to sensitivity to other sensor

errors [Filla 1990], or were limited in their applicability [Lee 1994]. Some of the difficulties in

this earlier work may also have come from their neglect of the attitude/bias initial correlation in

the covariance evolution equation. This additional term is given specifically in Section 3.

The second question is whether the random walk gyro bias model continues to be useful

over very long time spans. This question is driven by a desire to use data from widely separated

times to perform gyro calibration. Calibration software often makes use of data from a sequence

of attitude maneuvers usually performed over a few hours or a few days. It is often assumed that

the calibration parameters, including the biases, remain constant for this time. We are developing

a new algorithm for gyro calibration that can use data from multiple batches separated by any

amount of time. A separate bias is estimated for each batch, allowing for more accurate calibra-

tion of the other, constant parameters (in particular, the scale factors and misalignment).

Section 2 of this paper presents a specific gyro statistical model. This is followed in

Section 3 by a derivation of the time evolution of the attitude covariance. The uncertainty in the

propagated attitude grows with time due to the noise terms in the gyro model. As mentioned

above, the system state is often taken to include both the attitude and the gyro bias. The error

covariance of the full state is used in Kalman filters onboard or on the ground for attitude estima-

tion; having an explicit expression for the attitude part of the covariance is useful for spacecraft

error budget analyses.

Section 4 analyzes bias statistics and trends for various missions. The main focus is on the

Upper Atmosphere Research Satellite (UARS), but results are also given for the Extreme Ultra-

violet Explorer (EUVE) and the Rossi X-Ray Timing Explorer (RXTE). Short term trends are

analyzed using twelve 24-hour UARS data sets. We show that this data can be used to determine

the gyro bias white noise strength, avoiding many of the difficulties in [Filla 1990] and [Lee

1994]. Section 4 also presents plots of long-term trends in the gyro biases. These indicate secular

terms that are not part of the gyro model. These terms are small and are not significant for most

attitude determination and control purposes. However, the bias trends do indicate the value of

allowing for time-dependent biases in gyro calibration applications that extend over very long

time spans.

2. GYROSCOPE MODEL

The sensor is composed of three rate-sensing gyroscopes. Each of these is sensitive to

rotation about the two axes perpendicular to its spin axis. The three gyros are combined into an

Inertial Reference Unit (IRU) where the geometry is chosen to give redundant sensitivity about

each axis.

The sensor model describes how the IRU responds to actual rotation of the spacecraft body

in inertial space. None of the details of the internal dynamics, electronics, or control feedback are

included in this level of modeling. Instead, the sensor output is taken to be a linear transformation

of the true rotation rate, with allowance for biases and statistical noise. The model is taken from

that given by Farrenkopf [Farr 1974].



The output observationsare modeledas the projection of the true rotation rate projected
onto the threesensitiveaxesof theIRU, correctedfor any known a priori scalefactor error and
bias, then rotated into the body frame.To this is addeda white noise processrepresentingthe
inherent sensorerrors that accumulateas a random walk of the integratedrotation angle.The
scalefactorsandsensoralignmentareassumedin this paperto beaccuratelyknown. However,
sincethe biasesareknown to drift slowly over time, they arealso modeledwith a randomwalk
process.Thus,

dr,
dt 02

(1)

where o3 is the true rate vector with magnitude co, ff is the measured rate vector after accounting

for the a priori data adjustments, /_ is the bias correction vector, and the r/terms are white noise

sources driving random walk of the rotation angle and bias. The 2-time expectation values are
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where 6 is the Dirac delta-function, and the o-1 and _ are the strengths of the white noise sources

allowing for differing values on all 3 gyro axes. As an example, the Teledyne DRIRU-II gyros

[GSFC 1976], as flown on UARS and EUVE, are specified to have inherent noise of roughly

o'12 _ 10 14 rad2/sec and _z _, 10-z0 rad2/sec 3 (the o'1 and _ are called 0-vand 0-u in [Farr 1974] and

some other references). These noise values are from the DRIRU-II specifications for time spans

up to 1 month. Beyond 1 month, the propagated attitude and bias errors may well show trends

that deviate from this random walk model.

3. TIME EVOLUTION OF THE COVARIANCE

In this Section, the covariance of the error state vector is examined and its evolution

equation is given. The covariance is broken down into submatrices that obey coupled equations.

The gyro bias covariance as a function of time is easily obtained. Finding an exact expression for
the attitude covariance is a little more difficult. It can be derived from the continuous-time form

of the equations by solving the coupled equations for the bias, then the correlations, and finally

the attitude covariance. Alternatively, it can be obtained starting from the known discrete-time-

increment expression for the entire state error covariance. The latter method is presented here; it

is somewhat briefer since it assumes knowledge of the transition matrix. For background

material, for example, see [Gelb 1974] for a general discussion of the covariance evolution, or

[Lefferts 1982] for specific application to the spacecraft attitude/gyro bias problem.

The main result of this Section is to show how the attitude uncertainty grows with time. The

result is given below in Eq. (15). The leading terms indicate that the mean variance grows as a

cubic polynomial. (The mean variance is obtained by taking one-third of the Trace of the attitude



partof the covariancematrix to averageover the threespacecraftaxes.)If the attitudeerrors can
bedeterminedfrom in-flight observations,thispolynomial canbe fit to determinethe gyro noise
parameters.However, it is difficult to determinethe true attitudeerror and to distinguish gyro
propagationerror from the influence of small systematicerrors in the various attitudesensors.
The cubicterm (which givesthe gyrobiasrandomwalk) is particularly hardto fit reliably. Even
with agooddeterminationof theattitudeerror,difficulties arisefrom the uncertaintyin the initial
attitude/biascorrelationterm which entersEq. (15) with a linear time-dependenceand from the
couplingamongthe axesdueto spacecraftmotion.The purposeof this Sectionis to make these
termsexplicit by giving theexactsolutionfor themeanattitudevariance.

Let the error statevector,x, consist of attitude and gyro bias corrections [Lefferts 1982].

The state evolution equation then is dx/dt = Fx, where the evolution matrix is

[-r_ 13×3 1F= 03x3 03×3J
(3)

and I is the identity matrix. For any 3-component vector, define the skew symmetric matrix to be
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Combining the noise terms from Eq. (2), the gyro noise spectral density matrix is
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The state error covariance matrix, P, evolves according to the equation

dP = FP + PF r + Q(t)
dt

See, for example, [Gelb 1974]. The discrete-time formulation of Eq. (6) is

(6)

ek = a'k_fk_,'t,r_, +Qk-i

where Pk = P(tk). The state transition matrix from tk-t to tk is

and

= [_k-I _'k-I-
_)k-I L03× 3 13×3

(7)

(8)
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tk
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(9)



We are interestedin the growth of the covariance,so take tk-t = 0, and tk = t. The transition

submatrices from 0 to t_ in Eq. (8) then can be shown to be

q_ = q_(t k )= e-i_tk

_2

= I- esin 0)t +-_-:(I- cos0)t)
0) 0.)"
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(10)

Divide the covariance matrix into submatrices

(11)

representing the 3x3 covariances of the attitude error, the bias vector, and their correlation. Then,

the gyro bias part of Eq. (7) yields

2
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where the superscript on Pb° indicates initial value (and similarly below for po and Pc")- The

linear growth of Pt, is characteristic of a random walk. If _2 is the average of the gyro bias noise

for the three gyro axes, then the mean bias variance, averaged over the three axes is

3 TrPb =ITrP_3 +o-2t (13)

From Eq. (7), the attitude part of the covariance at time t is
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The mean attitude variance is obtained by taking the Trace of Eq. (14) and dividing by 3. This is

the average attitude error for all three axes with equal weight. Let o-i2 be the average random

walk noise for the three gyro axes, and assume o-22 is the same on all three axes. This yields

3TrPa=3TrpO+o-2t+2Tr{pO_/+lTr_/p_v/r)+ 3 4 (0)t_sin0)t (15)

exactly. The identities _,=_,r¢, g/r_,=g/_,r, r_=-c._3/0) 2, and Tr_ 2 =-20) 2 can be

derived and are useful in arriving at Eq. (15). Expanding the final expression in Eq. (15) shows

the expected cubic leading behavior of the _2 term

a 90 +"" (16)



Note from Eq. (10) that the leading term in _ is linear in time. This makes the P_' term

linear with time and the Pb° term quadratic in Eq. (15). These initial values would need to be

known before o.t and o'2 could be determined by a direct fit to the attitude error. Also, if the

rotation rate is non-zero, the higher order parts of _ and _ become important. This has the effect

of coupling the three gyro axes in Eq. (15).

4. GYRO BIAS TRENDS

The gyro biases presented in this Section were obtained using a batch least-squares,

differential-corrector Attitude Determination System (ADS). In this paper, the ADS is used to

find the attitude and gyro bias vector that minimizes the root-mean-square differences between

observed star tracker vectors in the body frame and catalog star positions in the reference

geocentric inertial frame (GCI). The solution state vector represents the best estimate of the

attitude and gyro bias at an epoch time, usually taken to be the midpoint of the time span. The

star tracker observation errors over the entire time span are obtained by propagating the epoch

attitude using the gyro rates corrected with the biases estimated in the previous iteration.

One-Day Variation

Using the results of Section 3, one could try to determine the gyro statistical noise para-

meters from flight data by studying the growth of attitude error as a function of gyro propagation

time. However, the polynomial fit is complicated by uncertainty in the initial error correlations

and coupling of the errors on all axes due to spacecraft motion. There can also be temperature

variations of the parameters and systematic noise in the other sensors that masquerade as biases.

The actual error growth is very small; it is difficult, in particular, to determine the cubic term in

the polynomial fit. This is the term that gives the noise strength, _, that drives the gyro bias

random walk. This Section shows that this noise can be determined by analyzing the estimated

biases themselves rather than the propagated attitude error.

Experience gained from operations support for UARS and similarly equipped missions has

shown that the uncertainty in estimated gyro biases is roughly 0.005 arcsec/sec. This is based on

either Kalman filter or batch least-squares (differential corrector) methods with input from one

orbit of data for gyros and two fixed-head star trackers. Using the specified o-22 _ 10 "2° rad2/sec 3,

the bias can be expected to walk to 0.005 arcsec/sec in about 60000 see. (Remember, the random

walker travels a net distance with mean of zero but with a standard deviation that grows as the

square root of time.) Hence, it is necessary to look at time spans of nearly 1 day in order to see

the effect of the bias random walk. (The results given below show both a somewhat smaller

initial bias uncertainty and a smaller bias noise than expected.)

An archive of UARS attitude and orbit data from 1992 was collected for analysis. Twelve

24-hour data sets were available. These were broken into 1-orbit batches, and attitudes and gyro

biases were obtained for each batch using the ADS software. The orbital period for UARS is

maintained at 5772 sec; thus, 14 independent bias estimates were determined on 12 separate days.

The bias changes, or delta-biases, were computed for all possible lag times. That is, the bias

changes after 1 orbital period are all collected into one set; the changes after 2 orbital periods are

collected in another set, and so on. The distribution functions of these sets are shown in Fig. 1 as

a series of histograms. Each histogram pertains to a given time lag, as indicated in orbital periods.

Each histogram shows the number of occurrences for several observed delta-biases binned into

20 intervals of size 0.001 arcsec/sec. To improve the statistics, the bias changes on the X-, Y-,

and Z-axes are all combined. Note that there are many more samples with lag time of 1 or 2

orbital periods than for 13 or 14 periods. The small number of samples makes the distributions

appear less Gaussian for long lag times.
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Fig. 1. Distribution functions of gyro bias changes (arcsec/sec) for lag times ranging

from 1 to 14 orbital periods (period=5772 sec). Sample consists of twelve 24-hour data sets,

and data from the X-, Y-, and Z-axis gyro biases have been combined.

The widths of the distributions in Fig. 1 can be seen to increase as the time lag increases.

This is the growth in mean bias variance indicated in Eq. (13). Thus, to determine the value of

o'2 2, one can compute the variance of each distribution in Fig. 1 and fit them to a straight line.

The slope is 0"2 2, as shown by Eq. (13).

Figure 2 shows the variances as a function of time lag. Outlying points have been removed

from the distributions (see the discussion below). The value of the bias noise obtained from the

slope for this example is o.2 = 8.1e-06 arcsec/sec !5 or o.22 = 1.5e-21 rad2/sec 3 which is somewhat

better than the DRIRU-II specifications.
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Fig. 2. Variances of gyro bias changes (arcsec/sec) 2 as a function of lag time.

For the longest lag time of 14 orbital periods, there is only one sample for each axis from

each of the 12 data sets. It is clear that the statistical sample is much better for the shorter time

lags, however the slope is more observable by including the longer time lags. The slope is uncer-

tain by roughly a factor of 2. This number derives from numerical tests using different axes and

various shifts and tolerances in the data processing. (Kalman filter performance is robust for

changes in o'2 2 of a factor of 10, so factor of 2 accuracy is quite good enough to be useful.)



One source of error comes from the outliers in the distributions. These make the variance

lbr some time lags to appear too large. [t must be remembered that these distributions are for bias

changes where the bias error itself was expected to be 0.005 arcsec/sec. The actual error has been

reduced from this value by very careful attention to eliminating bad data. The gyro telemetry data

were all checked and bad points removed before running the ADS. Careful star identification was

done on the star tracker data using a pattern match method. Outliers in the star observations were

removed by setting a 3-sigma tolerance when running the ADS (that is, any star observations

more than 3 standard deviations from the expected values were discarded). However, the outliers

in Fig.1 are testimony to the presence of some small systematic errors. These cause the bias

estimates on adjacent orbits to oscillate slightly, so the delta-biases oscillate back and forth,

producing the outlying points in the histograms. To avoid this problem, the outliers are removed

by imposing a 4-sigma limit. Any delta-biases larger than 4 standard deviations are removed from

each histogram, then the variances are re-computed.

The tiny systematic errors that cause a few of the estimated biases to oscillate may be due

to temperature changes causing true bias shifts or due to star tracker errors as certain stars with

small catalog errors pass through different parts of the star tracker fields of view on subsequent

orbits. They could also be due to differences in the star tracker accuracy in various pans of the

fields of view, combined with random differences from orbit to orbit in the distribution of stars in

the fields of view.

Long-Term Variation

Some long-term trends in gyro biases are shown in Fig. 3. The data represent values from

UARS for which we have a more complete history of biases than for any of the other missions

studied. Trends for other missions are qualitatively similar.

The data in Fig. 3 represent gyro bias changes over a time span of more than 2.5 years.

These biases were computed using the ADS as pan of the ongoing UARS mission support in the

NASA/GSFC Flight Dynamics Facility.
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One problem with the original solutions was that the computed gyro biases had large

systematic changes whenever the spacecraft performed a 180 deg yaw maneuver (this maneuver

occurred approximately every 5 weeks throughout the mission in order to keep the Sun always on

the same side of the spacecraft). These apparent bias changes arise from a small uncorrected

misalignment of the gyroscope. This causes the +1 revolution per orbit Y-axis pitch rotation of

the spacecraft to project slightly onto the X- and Z-gyro axes. The X- and Z-axis gyros detect this

projection, and the ADS represents it as a new gyro bias.

At other times, the ADS bias solutions showed occasional large, abrupt changes. These

shifts occurred whenever the operations personnel recalibrated the gyros and began adjusting the

raw rates with new a priori scale factors, misalignments, and biases.

All of these large, systematic shifts in the biases were removed from the trend plots. It was

assumed that the bias immediately after each shift equals the bias immediately before the shift.

Hence, the shift is removed by offsetting all subsequent biases by the amount of the shift. The

overall trend in the biases has a small slope and the time between bias solutions is short (about

1 week), so treating the biases before and after each shift as equal does not introduce much error.

The biases were also shifted to make the first value zero so these plots actually represent the

change in gyro bias over the course of time. It is the slope which is of interest in this study, not
the biases themselves.

The gyro biases shown in Fig. 3 are actually quite stable. The overall drift of the biases is

roughly 0.01 arcsec/sec/year. However, the random walk model predicts a spread of biases with

standard deviation 5 times larger than this even with the small slope found in Fig. 2.

Similar plots for EUVE show slopes of about the same magnitude as UARS. Both UARS

and EUVE carry Teledyne DRIRU-II gyros. The RXTE spacecraft carries Kearfott SKIRU-DII

gyros. These are designed to be functionally similar to the DRIRU-II. The slope of the bias trend

plot for RXTE shows larger magnitudes of about 0.08 arcsec/sec/year. As seen in Fig. 4, the trend

here is more clearly linear. These systematic linear trends show that the random walk model does

not apply for long time spans.
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5. CONCLUSIONS

In this paper, we have presented an exact closed-tbrm solution of the time evolution of the

mean attitude variance subject to the Farrenkopf gyro noise model. The initial correlation term

and other error sources cause much difficulty in determining the strength of the gyro bias noise

from analysis of the attitude error. It is shown how the gyro bias noise can be determined by

analyzing the biases themselves rather than the attitudes.

Long-term plots of the biases show approximately linear trends. This secular drift is not

included in the gyro model. The drift is very small for two DRIRU-II units studied and somewhat

larger for a SKIRU-DII. The slopes are expected to be much larger for some of the less stable

gyros available and may also increase for any unit as it ages. It is suggested that gyro calibration

methods that use maneuver data spread out over long time spans can be improved by allowing for

a changing bias. Software is under development that solves for the constant gyro scale factor and

misalignment corrections simultaneously with multi-epoch attitudes and biases. The advantage of

such a method is that it allows ongoing improvement to the gyro calibration parameters with

every attitude maneuver, rather than relying on a single campaign of maneuvers specifically for

calibration. One may speculate that less stable gyros might also benefit by including the long-

term trend into the gyro model and solving for the slope as part of an augmented state vector.
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